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Fluxional processes in transition-metal organometallic com­
plexes are typically studied by NMR spectroscopy.1 Stable 
paramagnetic organometallic complexes are becoming increasingly 
common,2 however, and NMR methods cannot, in general, be used 
for studies of these molecules. ESR spectroscopy has been used 
to study stereochemical nonrigidity in organic radicals,3 but there 
are a few instances of it being used to study fluxional behavior 
in paramagnetic organometallic complexes.4 In this communi­
cation we report the results of a variable-temperature ESR study 
of the 19-electron5 (^-C5Ph4H)Mo(CO)2L2 radical complex (L2 

= the chelating phosphine ligand 2,3-bis(diphenylphosphino)maleic 
anhydride).7 From an analysis of the spectra, we were able to 
determine the activation parameters for rotation of the C5Ph4H 
ring about the bonding axis. 
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Figure 1. ESR spectra of (^-C5Ph4H)Mo(CO)2L2 (L2 = 2,3-bis(di-
phenylphosphino)maleic anhydride) in o-dichlorobenzene at various 
temperatures. 

Figure 1 shows the ESR spectrum8 of the (?;5-C5Ph4H)Mo-
(CO)2L2 complex in o-dichlorobenzene at various temperatures. 
At 31 0C (Figure la) the two phosphorus atoms are magnetically 
inequivalent because the spectrum shows four well-resolved lines 
(giso = 2.0058; aPl = 9.01 G, a?1 = 9.94 G). As the temperature 
increased, the two middle lines began to overlap (Figure lb,c,d) 
and eventually (at 148 0C) broadened into a single line (Figure 
Ie). When the temperature was increased further, this broad 
middle line began to sharpen and eventually the spectrum became 
a 1:2:1 triplet (aP = 8.92 G),9 indicative of magnetically equivalent 

(8) All ESR spectra were measured on a Varian E-109 spectrometer op­
erating at X-band frequency with 100 kHz magnetic field modulation and 
equipped with Varian E-272B field/frequency lock assembly. The tempera­
ture at the sample was controlled by a Varian E-4557-9 variable-temperature 
accessory, and DPPH was used as ̂ -marker and for magnetic field calibration. 

(9) Ideally, the 31P coupling constant in the fast-exchange limit (8.92 G) 
should be the average of the two coupling constants in the slow-exchange limit 
(9.01 and 9.94 G). We attribute the nonideal behavior observed with this 
molecule to a decrease in the electron-withdrawing ability of the 1,'-C5Ph4H 
ligand as the temperature is increased. We suggest that, as the temperature 
is increased, the electron-withdrawing ability decreases because rapid dynamic 
rotation of the phenyl rings destroys the extensive conjugation in the ligand. 
The decreased electron-withdrawing ability of the i,5-C5Ph4H ligand will 
polarize the unpaired electron toward the oxygen atoms of the L2 ligand. 
Consequently, there will be less unpaired electron spin density on the two 
phosphorus atoms at higher temperature, and the 31P coupling constants will 
be smaller than at lower temperatures. (The ,5'97Mo coupling constant should 
also decrease with increasing temperature. However, this coupling constant 
is so small that we were unable to measure a decrease within experimental 
error; aMo,-i4°c = 0.85 ± 0.02 G; aMo,i85-c — 0.81 ± 0.02 G.) In support of 
this explanation, we note that our previous study of the 19-electron Co(CO)3L2 
complex and its substituted derivatives (Co(CO)2LT2) showed that the 
phosphorus coupling constants decreased as the electron-donating ability of 
the substituting ligands increased.6b In addition, NMR spectroscopic results 
on diamagnetic complexes containing the t,5-C5Ph4H ligand are consistent with 
the proposal that phenyl ring rotation increases with increasing temperature. 
Thus, Castellani and Trogler10 showed that the proton signal in the 7,'-C5Ph4H 
ligand shifted upfield as the temperature increased. The upfield shift was 
attributed to phenyl ring rotation; the rotation caused the loss of deshielding 
from the ring currents of adjacent coplanar phenyl rings. 
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phosphorus atoms (185 0C, Figure If)- Upon cooling, the spectral 
changes reversed.11 

A crystal structure of the complex showed that it has a 
"four-legged piano stool" structure as shown schematically below.12 

Because the C5Ph4H ring is unsymmetrically substituted, the 
phosphorus atoms are inequivalent, as shown. Rotation of the 
ring will "exchange" the phosphorus atoms, and fast rotation of 
the ring will make the two phosphorus atoms magnetically 
equivalent. Therefore, we attribute the dynamic ESR spectrum 
to rotation of the C5Ph4H ring. By approximating the effect of 
the ring rotation as a "two-site exchange" case,13 we were able 
to calculate the rate constants for the ring rotation. (Table I in 
the Supplementary Material lists the rate constants at various 
temperatures.) A plot of \n(k/T) vs 1 /T yielded the following 
activation parameters: AH* = 2.2 ± 0.1 kcal mol"1, AS* = -22.9 
± 0.3 cal K-1 mol"1. 

To confirm our assumption that ring rotation caused the dy­
namic ESR spectrum of the (71'-C5Ph4H)Mo(CO)2L2 complex, 
we synthesized the 19-electron (775-C5Ph5)Mo(CO)2L2 complex 
(note the symmetrically substituted C5 ring).14 The ESR spec­
trum of this complex was a 1:2:1 triplet, consistent with a structure 
in which the two phosphorus atoms are magnetically equivalent 
because the ring is symmetrically substituted. 

The rotation of cyclopentadienyl and other rings in organo-
metallic complexes has been widely reported.15 In general, the 
energy barrier to ring rotation is very small. That barrier which 
does exist is generally attributed to intermolecular forces. In 
contrast, the activation barrier observed for C5Ph4H ring rotation 
in (77'-C5Ph4H)Mo(CO)2L2 is largely due to unfavorable intra­
molecular steric interactions. Molecular models of the complex 
showed that the major barrier comes from the interaction between 
the phenyl rings on the C5 ring and the phenyl rings bonded to 
the phosphorus atoms. For the C5 ring to rotate freely, the phenyl 
groups on the C5 ring and on the phosphorus atoms must rotate 
cooperatively in a "gearing" fashion.16 Such a dynamic process 
would require a transition state of highly organized structure, 
resulting in a large negative activation entropy. The molecular 
models also showed that the alternative phosphorus-exchange 
pathway involving a trigonal-bipyramidal transition state was 
unlikely because of unfavorable steric interactions between the 
phenyl groups on the C5 ring and the phenyl groups on the 
phosphorus atoms. The large negative activation entropy can also 
rule out a phosphorus-exchange mechanism that takes place via 
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the dissociation of one end of the chelate ligand; this type of 
dissociative mechanism would result in a positive, rather than a 
negative, activation entropy. 
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We wish to report the reaction of a low-valent metal complex 
with ethylene oxide that is phenomenologically related to met­
al-induced oxirane reactions reported earlier.1"10 However, in 
the present case direct detection of an intermediate demonstrates 
that the reaction takes place by initial C-H activation, rather than 
by attack at a ring C-O bond, leading to a metalated oxirane. 
In addition, we have found that conversion of the metalated 
intermediate to the final reaction product, a C-bond rhodium 
enolate, involves predominant 1,2-rearrangement of hydrogen 
rather than rhodium. 

In analogy to the photochemical reaction of Cp*(L)RhH2 (1, 
Cp* = (77'-C5Me5); L = PMe3) with alkanes," irradiation of 1 
in ethylene oxide at -60 0 C also leads to products too sensitive 
to survive warming to 25 0C, and these materials have therefore 
been characterized by low-temperature spectroscopy. Thus, when 
1 was irradiated for 3 h in excess ethylene oxide (2a) in a sealed 
NMR tube held at temperatures below -60 0C, and the tube 
transferred into a spectrometer probe precooled to this temper­
ature, we observed the clean formation of the two disastereomeric 
(both the rhodium center and a-carbon atom are stereocenters) 
metalated epoxides Cp*(L)Rh(H)(CHCH2Q), 3a, in over 95% 
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